Decrease of prostaglandin E_2 receptor binding is accompanied by reduced antilipolytic effects of prostaglandin E_2 in isolated rat adipocytes

B. Richelsen¹ and H. Beck-Nielsen

Division of Endocrinology and Metabolism, Departments of Internal Medicine and Clinical Chemistry, County Hospital, Aarhus, DK – 8000 Aarhus C, Denmark

Abstract The effect of treatment of isolated rat adipocytes with prostaglandin E_2 (PGE₂) on subsequent [³H]PGE₂ binding was studied. In addition, the antilipolytic effects of PGE₂, adenosine, and insulin were studied in control and PGE₂-treated adipocytes. Treatment of adipocytes with PGE₂ (1 μ M) decreased the binding of [³H]PGE₂ by 61% (from 11.0 to 4.6 fmol/ 10^6 cells, P < 0.005). Scatchard analysis of the binding data demonstrated that the decrease of PGE₂ receptor binding was due to a decrease in the apparent number of PGE_2 receptors while the apparent receptor affinity was unaltered. Reduction of the PGE2 receptor binding was specifically regulated inasmuch as structurally related compounds such as PGF_{2a} and arachidonic acid had only minor effects on subsequent [³H]PGE₂ receptor binding. Reduction of the available receptor number was associated with a significant decrease in the antilipolytic effect of PGE₂ on the isoproterenol-stimulated lipolysis (P < 0.05). The maximal antilipolytic effect of PGE_2 was decreased by 45%. Desensitization of the biological effect of PGE₂ (antilipolysis) was only partially specifically regulated inasmuch as the antilipolytic compound phenylisopropyladenosine also had reduced antilipolytic effect in PGE₂-treated cells. However, the antilipolytic effect of insulin was similar in control and PGE2-treated cells. It was found that the PGE₂-induced decrease of [³H]PGE₂ receptor binding may be due to a very tight coupling between the PGE₂ molecule and its specific receptor. This tight coupling may then represent an occupancy of the receptor rather than a true loss of receptors. III In conclusion, it was demonstrated that PGE₂ was able to induce a longstanding occupancy of its own receptor. This decrease of available receptors for further PGE₂ binding was associated with a desensitization of PGE₂'s antilipolytic effect. These findings further emphasize the tight coupling between the receptor binding of PGE₂ and the antilipolytic effect of PGE2.-Richelsen, B., and H. Beck-Nielsen. Decrease of prostaglandin E₂ receptor binding is accompanied by reduced antilipolytic effects of prostaglandin E2 in isolated rat adipocytes. J. Lipid Res. 1985. 26: 127-134.

Supplementary key words antilipolysis · receptor occupancy

In the past few years much progress has been made in studying a variety of adenylate cyclase-linked hor-

mone receptors by direct radioligand-binding techniques (1-3). Several studies have shown that, in intact cells exposed to a stimulatory hormone, the adenylate cyclase response becomes desensitized after repeated hormonal stimulations (4-8). This desensitization is often accompanied by a decrease of the hormone binding to the cells. These phenomena have been described for hormones that stimulate the adenvlate cvclase complex such as beta-adrenergic agonists and prostaglandins of the E type (7, 9-11). However, prostaglan- $\dim E_2$ (PGE₂) does not stimulate the adenylate cyclase in isolated adipocytes. On the contrary, this compound has an inhibitory effect on this enzyme which results in decrease of intracellular cyclic-AMP (12, 13). Reduction of PGE₂ binding sites and desensitization of the biological effect for hormones that interact with the adenylate cyclase system in an inhibitory manner have not yet been studied extensively.

It is generally accepted that hormone-sensitive adenylate cyclase systems consist of at least three cell membrane components: a specific receptor (R), a guanine nucleotide binding regulatory component (N), and a catalytic component of adenylate cyclase (C) (7, 14). Recently, it has been demonstrated that this N-component consists of a pair of homologous guanine nucleotide binding regulatory proteins, one of which mediates stimulation (N_s) of adenylate cyclase activity, while the other (N_i) is responsible for inhibition (15, 16). Thus, in adipocytes, PGE₂ may interact with the N_i subunit of the regulatory component.

We have recently demonstrated (17) the existence of specific PGE₂ binding sites on isolated human adipo-

Abbreviations: PGE_2 , prostaglandin E_2 ; PIA, N⁶-phenylisopropyladenosine.

¹Address for reprints and correspondence: B. Richelsen, Medical Department III, Aarhus County Hospital, Tage Hansensgade, DK – 8000 Aarhus C, Denmark.

cytes. Furthermore, PGE₂ had pronounced antilipolytic effects both on basal and isoproterenol-stimulated lipolysis. This effect is probably mediated through inhibition of the adenylate cyclase system (13, 18). Since the equilibrium binding constant of PGE, for the high affinity binding sites was 2 nM and half-maximal inhibition of the isoproterenol-stimulated lipolysis was 3.8 nM, we suggested that the binding of PGE_2 to adipocytes was closely related to the antilipolytic effect of PGE₂. In order to better understand PGE₂ receptor regulation in adipocytes, we have studied whether these binding sites can be down-regulated in vitro and, if so, whether such changes in receptor concentration have functional consequences for the antilipolytic effect of PGE₂. Since we have found that PGE₂ binding characteristics of rat adipocytes and human adipocytes were similar, we used rat adipocytes for the present study.

MATERIALS AND METHODS

Fat cell preparation

Adipose tissue was obtained from epididymal fat pads of male Wistar rats. Body weights of the animals ranged from 200 to 350 g. Adipocytes were isolated as previously described (17, 19) by collagenase digestion of fat tissue fragments in 10 mM HEPES buffer, pH 7.4, containing 2.5% bovine serum albumin (BSA) and 0.5 mg/ml of collagenase (37°C and light shaking). Isolated fat cells were obtained after 60 min of incubation. Then the adipocytes were filtered on a silk screen and washed three times with the incubation buffer and immediately used under the different assay conditions. The concentration of fat cells in adipocyte suspension was calculated as adipocyte volume fraction divided by mean adipocyte volume as previously described (17, 19).

Preincubations

Isolated adipocytes were resuspended in incubation buffer containing the following solute concentrations (mM): HEPES 10, NaCl 135, KCl 4.8, MgSO₄ 1.7, CaCl₂ 2.5, NaH₂PO₄ 0.2, Na₂HPO₄ 1.0, glucose 5.0, and BSA 5%. The pH was 7.4 (at 37°C). Adipocytes, in a volume fraction of 0.2, i.e., about 0.5×10^6 cells/ml, were preincubated in the presence or absence of PGE₂ at different concentrations, but routinely at a concentration of 1 μ M. The incubation period was usually 50 min at 37°C. After this preincubation period adipocytes were washed four times in fresh buffer by centrifugation. The washing procedure usually took 25–30 min. In all the experiments control and PGE₂-treated cells were run in parallel.

Binding assay

Adipocytes were resuspended in incubation buffer at a volume fraction of 0.1-0.15, i.e., about $2-4 \times 10^5$ cells/ml. Binding studies were conducted in a final volume of 300 μ l as previously reported (17). The incubation mixture consisted of 250 µl of adipocyte suspension, 25 μ l of [³H]PGE₂ in a final concentration of 0.5-3 nm, and 25 µl of buffer or unlabeled ligand for competition. The binding reaction was initiated by adding adipocytes to the incubation mixture. The binding study was carried out for 40 min at 22°C. Nonspecific binding was determined in the presence of 0.5 μ M unlabeled PGE₂ and ranged from 10 to 20% of the total binding at a [³H]PGE₂ concentration of 1 nM. Specific binding was taken as the total amount of radioactivity bound to the adipocytes minus nonspecific binding. The binding reaction was terminated as previously described by adding 9.75 ml of ice-cold saline to the incubation vessels followed by 1 ml of silicone oil (17, 19, 20). After centrifugation for 1 min at 2500 g, the fat cells were harvested from the oil layer. The fat cells were placed in 5 ml of scintillation fluid (Lipoluma, Lumac BV, Netherlands) and counted in a Rackbeta counter (LKB, Finland) with stored quench calibration curves and automatic dpm calculation.

Lipolysis and antilipolysis

Adipocytes were resuspended in incubation buffer at a volume fraction of 0.20, i.e., about 5×10^5 cells/ml. In the study of the lypolytic effect of isoproterenol, 200 μ l of adipocyte suspension was incubated with isoproterenol in increasing concentrations for 90 min at 37 °C. Concerning the antilipolytic effect of PGE₂, 200 μ l of adipocyte suspension was incubated with PGE₂ in increasing concentration for 30 min at 37 °C. Then isoproterenol was added in a final concentration of 5 μ M and the incubation was continued for another 60 min. Glycerol release was taken as an index of lipolysis. All the experiments were performed in duplicate. Glycerol release was determined enzymatically (Peridochrom, Boehringer Mannheim) by a fluorometric method (21).

Materials

 $[{}^{3}$ H]Prostaglandin E₂ (sp act 140–170 Ci/mmol) was from Radiochemical Center, Amersham. Collagenase from *Clostridium histolyticum*, bovine serum albumin, prostaglandin E₂, prostaglandin F_{2α}, arachidonic acid, adenosine deaminase, and phenylisopropyladenosine were from Sigma Chemical Co. (St. Louis, MO). Silicone oil 510/50, relative density 0.99, was from Dow Corning Cooperation (Midland, MI). Insulin was obtained from NOVO Research Institute (Copenhagen, Denmark).

JOURNAL OF LIPID RESEARCH

Statistics

Data in the text are given as mean ± 1 SD; data in figures and tables are given as mean ± 1 SEM. In comparative studies Student's paired *t*-test was used.

RESULTS

Binding studies

Binding of [³H]PGE₂ to rat adipocytes was very similar to the binding data obtained in isolated human adipocytes (17). Steady state binding was achieved after incubation for 20 min at 22°C and was then constant for more than 1 hr (data not shown). In the present study control and PGE2-treated rat adipocytes were run in parallel incubations. After preincubation in the presence and absence of unlabeled PGE₂ for 50 min at 37°C, adipocytes were washed vigorously four times by centrifugation. The subsequent ability of adipocytes to bind $[^{3}H]PGE_{2}$ was then determined. When adipocytes were preincubated with PGE₂ at a concentration of 1 μ M, the specific binding of [³H]PGE₂ was decreased by $62 \pm 12\%$, from 11.0 ± 2 fmol/10⁶ cells in controls to $4.6 \pm 1.6 \text{ fmol}/10^6$ cells in PGE₂-treated cells (P < 0.005) (Fig. 1A). Nonspecific binding was similar in control and treated adipocytes. The PGE₂-induced decrease of [³H]PGE₂ binding could occur through a decrease in receptor number and/or in receptor affinity.

To evaluate these possibilities, competition binding curves for controls and PGE₂-treated cells were constructed (Fig. 1A). Scatchard analysis of the data revealed two straight lines that had different x-axis intercepts on the abcissa (B_{max}) but equal slopes (Fig. 1B), indicating the same affinities but different concentrations of receptors. In these experiments the apparent receptor concentration was decreased from 29 fmol/10⁶ cells to 14 fmol/10⁶ cells and the apparent affinities were similar in control and PGE-treated cells (K_D = 1.2 nM and 1.7 nM, respectively). This decrease of [³H]PGE₂ binding to adipocytes was already observed after incubation with unlabeled PGE₂ for 10 min. The maximal decrease of binding was obtained after incubation for 40–60 min (data not shown).

The effect of PGE₂, in increasing concentrations, on subsequent binding of $[^{3}H]PGE_{2}$ is shown in Fig. 2. A dose-dependent decline in receptor binding was observed and half-maximal decrease in receptor binding was reached at a PGE₂ concentration of 3.5 nM.

Reduction of available PGE₂ receptors seemed to be a specific effect of preincubation with PGE₂, inasmuch as structurally related compounds such as PGF₂^{α} and arachidonic acid had only minimal effects on [³H]PGE₂ binding (Fig. 3). Preincubation with PGF₂^{α} and arachidonic acid at a concentration of 1 μ M decreased the subsequent PGE₂ binding by 10–15%. Before the adipocytes were washed, PGF₂^{α} and arachidonic acid at these concentrations (1 μ M) inhibited the

Fig. 1 Specific binding of $[{}^{3}H]PGE_{2}$ to control (•) and PGE₂-treated (\bigcirc) rat adipocytes. Panel A: Competition curves of unlabeled PGE₂ with $[{}^{3}H]PGE_{2}$ in rat adipocytes. Rat adipocytes were incubated in the presence and absence of PGE₂ (1 μ M) for 50 min at 37 °C. After the washing procedure the binding study was performed with $[{}^{3}H]PGE_{2}$ (0.6 nM) and unlabeled PGE₂ for 40 min at 22 °C. Data are expressed as specifically bound $[{}^{3}H]PGE_{2}$ to adipocytes in fmol per 10⁶ cells and are given as mean \pm SEM for five paired experiments. Panel B: Using the Scatchard plot (obtained from the competition data in panel A), the following equilibrium binding constants (K_D) and total binding capacities (B_{max}) for control and PGE₂-treated cells were: K_D, 1.2 nM and 1.7 nM; B_{max}, 29 fmol/10⁶ cells and 14 fmol/10⁶ cells, respectively.

Fig. 2 Concentration dependence of PGE₂-induced decrease in $[{}^{3}H]PGE_{2}$ binding in rat adipocytes. Adipocytes were incubated with unlabeled PGE₂ in different concentrations for 50 min at 37 °C followed by four washes. The subsequent $[{}^{3}H]PGE_{2}$ binding to fat cells was measured as described in Materials and Methods. The concentration of $[{}^{3}H]PGE_{2}$ was 1 nm. Data are expressed as mean \pm SEM for three experiments performed in duplicate.

 PGE_2 receptor binding by 60% and 30%, respectively (data not shown).

To characterize further this process of interaction between PGE₂ and its receptor, adipocytes were preincubated with [³H]PGE₂ for 50 min at 24 °C. Adipocytes were then washed as previously described both in the presence and absence of unlabeled PGE₂ (1 μ M) in the washing medium. Unlabeled PGE₂ was included in the medium to accelerate the dissociation of [³H]PGE₂. [³H]PGE₂ binding to adipocytes before and after washing is shown in **Table 1**. It was found that vigorous washing for 30 min only removed about 50% of adipocyte-bound radioactivity when a concentration of 3 nM [³H]PGE₂ was used. Unlabeled PGE₂ in the washing medium did not significantly reduce the residual amount of bound radioactivity.

Lipolysis studies

SBMB

OURNAL OF LIPID RESEARCH

Studies were also performed to determine whether this PGE₂-induced decrease in available PGE₂ receptors was related to parallel changes in the biological effect of PGE₂. Thus, the lipolytic effect of isoproterenol and the antilipolytic effect of PGE₂ and other compounds were examined in control and PGE₂treated adipocytes. Isoproterenol stimulated glycerol release in a dose-dependent manner both in control and PGE₂-treated cells (**Fig. 4**). Half-maximal stimulatory effect of isoproterenol was reached at a concentration of 100 nM in control cells and at 320 nM in PGE₂treated cells, indicating a reduced sensitivity of isoproterenol in PGE₂-treated cells. However, the maxi-

The antilipolytic effect of PGE₂ on isoproterenolstimulated lipolysis was significantly reduced in PGE₂treated cells (Fig. 5). Basal lipolysis was decreased in PGE2-treated cells compared to controls, from 312 \pm 45 to 290 \pm 44 nM glycerol per 10⁶ cells per 90 min (P < 0.05). Maximal inhibition of PGE₂ on isoproterenol-stimulated lipolysis was reduced from an inhibition of $61 \pm 16\%$ in controls to an inhibition of 34 \pm 12% in treated cells (P < 0.01). Hence, preincubation of adipocytes with PGE_2 (1 μM) resulted in a decrease of the antilipolytic effect of PGE₂ by about 45%. Contrary to the decreased maximal responsiveness of PGE₂ in treated adipocytes, the sensitivity of PGE_2 , expressed as half-maximal inhibition (IC₅₀), was similar in the two groups $[IC_{50} \text{ (control)} = 0.7 \text{ nM vs.}$ IC_{50} (treated) = 1.2 nM, P > 0.05].

Furthermore, to examine whether this reduced antilipolysis was a specific effect of PGE₂, we studied the antilipolytic effect of such unrelated compounds as insulin and N⁶-phenylisopropyladenosine (PIA, a nonmetabolizable analogue of adenosine) in control and PGE₂-treated cells. PIA, like PGE₂, inhibits lipolysis through a decrease of intracellular cyclic-AMP (22) and this effect is mediated via binding to specific adenosine

Fig. 3 Specificity of prostaglandin-induced reduction of PGE₂ binding sites in rat adipocytes. Adipocytes were incubated with PGE₂ (1 μ M), PGF₂ (1 μ M), and arachidonic acid (1 μ M) for 50 min at 37 °C. Control cells were incubated without added prostaglandins. After the washing procedure the binding of [³H]PGE₂ was measured as described in Materials and Methods. Data are expressed as mean \pm SEM for five experiments made in parallel.

	[³ H]PGE: Bound before Wash	[³ H]PGE ₈ Bound after Wash	[³ H]PGE ₁ Bound after Wash with PGE ₂ (1 μM)
		fmol/10° cells	
Additions			
[³ H]PGE ₂ (0.5 nm)	10.3 ± 2.1 (100%)	3.4 ± 1.0 (33%)	3.0 ± 0.8 (29%)
[³ H]PGE ₂ (3.0 nm)	$\begin{array}{r} 23.3 \pm 1.9 \\ (100\%) \end{array}$	11.5 ± 2.0 (49%)	9.3 ± 2.2 (40%)

Adipocytes were incubated with [³H]PGE₂ in the indicated concentrations for 50 min at 24 °C. After the adipocyte-bound [³H]PGE₂ was determined, the remaining adipocytes were washed in the presence or absence of unlabeled PGE₂ (1 μ M). Then residual [³H]PGE₂ binding to the adipocytes was measured. Data are expressed as mean \pm SEM for three experiments.

Fig. 4 Upper panel: Concentration dependence of isoproterenol-induced glycerol release in control (\bullet) and PGE₂-treated (\bigcirc) rat adipocytes. Incubations with adipocytes were carried out in the presence and absence of PGE₂ for 50 min at 37 °C. After the washing procedure adipocytes were incubated with isoproterenol in increasing concentrations for 90 min at 37 °C. Data are expressed as mean \pm SEM for three paired experiments performed in duplicate. Lower panel: Data are expressed as percentage of the maximal response of isoproterenol.

receptors (23). Which mediators are responsible for the antilipolytic effect of insulin is still controversial but cyclic-AMP does not seem to be directly involved (24-26). As shown in **Table 2** we found decreased antilipolytic effects of PIA in PGE₂-treated fat cells (P < 0.05). However, the antilipolytic effect of insulin was similar in the two groups. The highest concentration of insulin and PIA used in these experiments was expected to result in maximal antilipolytic effect of these compounds.

DISCUSSION

The present report demonstrates that preincubation with PGE₂ was able to induce a decline of the receptor binding in rat adipocytes assayed by [³H]PGE₂ binding techniques. Scatchard analysis of the specific binding data revealed a decrease in the number of PGE₂ receptors by about 60% in PGE2-treated cells. This decrease of binding sites was accompanied by a decrease of the maximal antilipolytic of PGE₂ by about 45%; however, the antilipolytic effect of PIA was also reduced (Table 2). Nonspecific binding was approximately the same in both groups. We have recently demonstrated (17) that PGE₂ binds to specific receptors on isolated human adipocytes with an equilibrium binding constant of 2 nM and that PGE₂ also has strong antilipolytic effects in these cells with an IC₅₀ value of 3.8 nM on isoproterenol-stimulated lipolysis. These data, together with our present results, even though they have been obtained in rat adipocytes, further indicate that the PGE₂ receptor binding to adipocytes is closely related to the antilipolytic effect of PGE2. Compared with our data obtained in human adipocytes, there was a reduced number (B_{max}) of PGE₂ binding sites on rat adipocytes (58 fmol/10⁶ cells in humans vs. 29 fmol/10⁶ cells in rats). However, if the binding was expressed per cm² cell surface, the total binding capacity was similar (19.3 fmol/100 cm² vs. 20.7 fmol/100 cm², mean surface of rat and human adipocytes was 15×10^{-9} m² and 28 $\times 10^{-9}$ m², respectively). The equilibrium binding constants were also similar in rat and human adipocytes with $K_D = 1.2$ nM and $K_D = 2$ nM, respectively. However, maximal antilipolytic effect of PGE₂ in human adipocytes was about 90% of the isoproterenol-stimulated lipolysis and in rat adipocytes maximal antilipolytic effect was only about 50% under the same experimental conditions. From these comparisons it is obvious that PGE₂ has a more pronounced antilipolytic effect in human adipocytes than in rat adipocytes, even though the binding data are similar.

When rat adipocytes were preincubated with radioactive PGE_2 and then washed, the residual radioactivity bound to the adipocytes was present in an amount

(Table 2). This residual radioactivity bound to the adipocytes agreed very well with the reduction of available binding sites induced by preincubation with unlabeled PGE₂ (about 60%). Thus, the loss of [³H]PGE₂ binding sites after pretreatment with PGE₂ probably represents an occupancy of the binding sites with PGE₂ rather than a true loss of binding sites. From these observations, together with our previous

of about 50% of the originally bound radioactivity

study in human adipocytes (17), it seems reasonable to assume that about 50% of the PGE₂ binding is readily reversible and the rest of the binding (50%) is very slowly reversible. That the "down-regulated" receptors are occupied by very tightly bound PGE₂ molecules is

Downloaded from www.jlr.org by guest, on June 19, 2012

Fig. 5 Antilipolytic effect of PGE₂ in control (•) and PGE₂treated (\bigcirc) rat adipocytes. Adipocytes were preincubated with and without PGE₂ and washed as previously described. The adipocytes were then incubated with PGE₂ in increasing concentration for 90 min at 37°C. Isoproterenol (5 μ M) was added for the last 60 min of the incubation to stimulate lipolysis. Basal lipolysis in control and PGE₂-treated cells was 312 ± 45 and 290 ± 44 nM glycerol per 10° cells per 90 min, respectively. Lipolysis is expressed as isoproterenolstimulated glycerol release minus basal glycerol release. Data are given as mean ± SEM for five paired experiments (A). In panel B, data for the antilipolytic effect of PGE₂ are given as percent inhibition of maximal stimulated lipolysis for each group. *P < 0.05; **P < 0.01.

SBMB

JOURNAL OF LIPID RESEARCH

	Control Cells	PGE ₂ -Treated Cells	Statistics	
	% of maximal lipolysis			
Additions				
None	100	100		
Insulin (80 pmol/l)	80.8 ± 4.1	80 ± 4.4	NS	
Insulin (640 pmol/l)	\cdot 56.6 ± 7.5	62.5 ± 5.3	NS	
PIA $(0.1 \mu mol/l)$	55.8 ± 8.2	66.7 ± 6.4	P < 0.05	
PIA (50 µmol/l)	45.8 ± 8.5	60.2 ± 5.8	P < 0.05	

Adipocytes were incubated with and without PGE₂ (1 μ M). After washing, adipocytes were then incubated with adenosine deaminase (1 μ g/ml) and insulin or PIA in the indicated concentrations for 90 min. Isoproterenol (5 μ M) was added for the last 60 min of this incubation to stimulate lipolysis. Basal lipolysis values in control and PGE₂-treated cells were 310 ± 44 and 292 ± 44 nM glycerol per 10⁶ cells per 90 min, respectively. Isoproterenol-stimulated lipolysis values were 645 ± 130 and 538 ± 80 nM glycerol per 10⁶ cells per 90 min, respectively. Data are expressed as percentage inhibition of the isoproterenol-stimulated lipolysis, mean ± SEM for five paired experiments. NS, not significant.

consistent with previous observations in frog erythrocytes (9), in cultured cell membranes (2), and in human adipocytes (17). The molecular basis for this densensitization or "down-regulation" phenomenon has been proposed by Brunton et al. (2) and Lefkowitz et al. (9) by the following scheme:

 PGE_2 binds to the receptor (R_1) to form the ligandreceptor complex $(PGE_2 - R_1)$ which is readily reversible. This complex is then more slowly changed into a stable ligand-receptor complex $(PGE_2 = R_2)$ which has a very slow dissociation constant $(k_{-2} \text{ or } k_{-3})$. This complex presumably represents the desensitized or "down-regulated" receptor. However, some extent of internalization of the ligand-receptor complex could not be excluded from the present study.

Robertson et al. (11) have also studied down-regulation and desensitization of PGE receptors. They induced down-regulation of the receptor in vivo in rat hepatocytes by a 16,16-dimethyl analogue of PGE_2 . The PGE receptor binding was decreased by 37% without any change of the affinity. This down-regulation was followed by a significant decrease of the PGE-stimulated adenylate cyclase activity. Taking into consideration the observation that PGE stimulates cyclic-AMP in hepatocytes and inhibits cyclic-AMP in adipocytes, these observations are in reasonable agreement with our findings. However, the down-regulation induced in hepatocyte membranes in vivo was found to be caused by a true loss of PGE receptors, since the amount of extracted PGE from control and treated membranes was similar in the two groups. This is in contrast to our findings in vitro in intact rat adipocytes. We found that the decrease of available PGE₂ receptors presumably was due to a very tight binding between the receptor and the PGE₂ molecule. Since the experimental conditions were so different in the two studies, it is difficult to explain the discrepancy.

The reduction of the PGE₂ binding seemed to be a specific effect of PGE₂ inasmuch as structurally related compounds such as $PGF_{2\alpha}$ and arachidonic acid had only minor effects on the subsequent PGE₂ binding (Fig. 3). PGE₂-induced desensitization of the antilipolysis was only partially specifically regulated. Insulin had similar antilipolytic effects in control and PGE₂treated cells but the antilipolytic effect of PIA was significantly reduced in PGE₂-treated cells (Table 2). Furthermore, basal lipolysis was reduced and the sensitivity of isoproterenol-stimulated glycerol release was decreased in PGE₂-treated cells (Fig. 4). These findings indicate that pretreatment with PGE₂ in some way may desensitize the adenylate cyclase system in a more heterogenous manner both for stimulatory (isoproterenol) and inhibitory (PIA, PGE₂) compounds. Clark and Butcher (4) and Kassis and Fishman (8) have reported similar findings concerning the effect of exposure to PGE on the subsequent stimulation of cyclic-AMP in fibroblasts. They proposed that the heterogenous desensitization of the adenvlate cyclase system induced by PGE involved an alteration of the nucleotide-binding protein (N) which resulted in less efficient coupling between the receptor (stimulatory or inhibitory) and the catalytic component (adenylate cyclase).

In conclusion, the present study demonstrated that a decrease in the number of functional PGE_2 receptors in rat adipocytes resulted in a concomitant decrease of the maximal antilipolytic effect of PGE_2 . However, the antilipolytic effect of PIA was also reduced. The tight coupling between the molecule and the PGE_2 receptor seemed to be a specific effect of PGE_2 , whereas desensitization of the antilipolysis was heterogenously regulated. Thus, PGE_2 may play a role in the modulation of adenylate cyclase-mediated pathways (e.g., lipolysis) by regulation of available cell surface PGE_2 receptors and, presumably, by regulation of nucleotide-binding protein (N).

We are indebted to J. Søholt, T. Skrumsager, L. Blak, and P. Jørgensen for technical assistance. The study was supported by grants from Aarhus Universitets Forskningsfond, Landsforeningen for Sukkersyge, and the Danish Medical Research Council.

Manuscript received 30 April 1984.

SBMB

JOURNAL OF LIPID RESEARCH

REFERENCES

- Williams, L. T., and R. J. Lefkowitz. 1978. Receptor Binding Studies in Adrenergic Pharmacology. Raven Press, New York. 83-126.
- Brunton, L. L., R. A. Wiklund, P. M. Arsdale, and A. G. Gilman. 1976. Binding of [³H]prostaglandin E₁ to putative receptors linked to adenylate cyclase of cultured cell clones. J. Biol. Chem. 251: 3037-3044.
- 3. Tharp, M. D., B. B. Hoffman, and R. J. Lefkowitz. 1981. Adrenergic receptors in human adipocyte membranes: direct determination by [³H]yohimbine binding. J. Clin. Endocrinol. Metab. 52: 709-714.
- Clark, R. B., and R. W. Butcher. 1979. Desensitization of adenylate cyclase in cultured fibroblasts with prostaglandin E₁ and epinephrine. J. Biol. Chem. 254: 9373-9378.
- Garrity, M. J., T. J. Andreasen, D. R. Storm, and R. P. Robertson. 1983. Prostaglandin E-induced heterologous desensitization of hepatic adenylate cyclase. J. Biol. Chem. 258: 8692-8697.
- Shear, M., P. A. Insel, K. L. Melmon, and P. Coffino. 1976. Agonist-specific refractoriness induced by isoproterenol. J. Biol. Chem. 251: 7572-7576.
- Lefkowitz, R. J., J. M. Stadel, and M. G. Caron. 1983. Adenylate cyclase-coupled beta-adrenergic receptors. Annu. Rev. Biochem. 52: 159-186.
- Kassis, S., and P. H. Fishman. 1981. Different mechanisms of desensitization of adenylate cyclase by isoproterenol and prostaglandin E₁ in human fibroblasts. J. Biol. Chem. 257: 5312-5318.

- Lefkowitz, R. J., O. Mullikin, C. L. Wood, T. B. Core, and C. Mukherjee. 1977. Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes. J. Biol. Chem. 252: 5295-5303.
- Johnson, C. L., B. B. Wolfe, T. K. Harden, P. B. Molinoff, and J. P. Perkins. 1978. Role of beta-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells. J. Biol. Chem. 253: 1472-1480.
- Robertson, R. P., K. R. Westcott, D. R. Storm, and M. G. Rice. 1980. Down-regulation in vivo of PGE receptors and adenylate cyclase stimulation. Am. J. Physiol. 239: E75-80.
- Butcher, R. W., and C. E. Baird. 1967. Effect of prostaglandins on adenosine 3', 5'-monophosphate levels in fat and other tissues. J. Biol. Chem. 243: 1713-1717.
- 13. Kather, H. 1981. Effects of prostaglandin E_2 on adenylate cyclase activity and lipolysis on human adipose tissue. Int. J. Obesity. 5: 659-663.
- Rodbell, M. 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. *Nature*. 284: 17-22.
- Gilman, A. G. 1983. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73: 1-4.
- Fain, J. N., and J. A. García-Sáinz. 1983. Adrenergic regulation of adipocyte metabolism. J. Lipid Res. 24: 945-966.
- Richelsen, B., E. F. Eriksen, H. Beck-Nielsen, and O. Pedersen. 1984. Prostaglandin E₂ receptor binding and action in human fat cells. J. Clin. Endocrinol. Metab. In press.
- Kather, H., and B. Zimmer. 1983. Mechanisms of prostaglandin action on human fat cell lipolysis. Adv. Prostaglandins Thromboxane Leukotriene Res. 12: 253-258.
- Pedersen, O., E. Hjøllund, H. Beck-Nielsen, H. O. Lindskov, O. Sonne, and J. Gliemann. 1981. Insulin receptor binding and receptor-mediated insulin degradation in human adipocytes. *Diabetologia*. 20: 636-641.
- Gliemann, J., and O. Sonne. 1978. Binding and receptormediated degradation of insulin in adipocytes. J. Biol. Chem. 253: 7857-7863.
- Chernick, S. S. 1969. Determination of glycerol in acyl glycerols. *Methods Enzymol.* 14: 627-631.
- Fain, J. N., and C. C. Malbon. 1979. Regulation of adenylate cyclase by adenosine. Mol. Cell. Biochem. 25: 143-169.
- Malbon, C. C., R. C. Hert, and J. N. Fain. 1978. Characterization of [³H]adenosine binding to fat cell membranes. J. Biol. Chem. 253: 3114-3122.
- 24. Czech, M. P. 1977. Molecular basis of insulin action. Annu. Rev. Biochem. 46: 359-384.
- 25. Czech, M. P. 1981. Insulin action. Ann. J. Med. 70: 142-150.
- Burns, T. W., B. E. Terry, P. E. Langley, and G. A. Robinson. 1980. Role of cyclic AMP in human adipose tissue lipolysis. Adv. Cyclic Nucleotide Res. 12: 329-341.